Diques e soleiras na Bacia do Parnaíba: geometria e padrões de alojamento
Palavras-chave:
Bacia do Parnaíba, diques e soleiras, mecanismo de intrusão, magmatismoResumo
A Bacia do Parnaíba, semelhantemente a todas as bacias paleozoicas brasileiras, apresenta corpos ígneos intrusivos em sua seção sedimentar, na forma de diques e, principalmente, soleiras. A geometria e o mecanismo de intrusão são importantes na identificação de trapas capazes de armazenar gás e/ou óleo. Uma variedade de modelos disponíveis na literatura sugere relação complexa entre o magma e a rocha hospedeira. Vários fatores (densidade e pressão de injeção do magma, geração de vapor, campo de tensões regional e local, reologia da rocha hospedeira, etc.) trabalham juntos controlando o alojamento, a expansão e a geometria final dos corpos ígneos intrusivos na coluna sedimentar. Estes corpos ígneos apresentam assinatura conspícua em perfil elétrico. O perfil de Raios Gama (GR) é o mais utilizado para identificação de soleiras, caracterizadas por um aumento na curva de GR em seu terço superior; esta feição é chamada informalmente na Petrobras de “barriguda”. Muitas soleiras ocorrem paralelas ao acamamento, geralmente intrudindo espessos pacotes de folhelhos e ao longo do contato das formações Longá-Poti, Pimenteiras-Cabeças e Tianguá-Jaicós. Seções sísmicas mostram que as soleiras ocorrem com geometrias variadas, incluindo plano-paralela à camada, forma de pires, planar transgressiva e em bloco falhado. A soleira mais comum na Bacia do Parnaíba é do tipo plano-paralela, sendo que esta geometria pode ocorrer com dezenas a centenas de quilômetros de extensão e espessuras entre 2-5m a 250-300m. A associação entre intrusões magmáticas e reservatórios de gás tem sido apontada como alvo prioritário na exploração das bacias paleozoicas brasileiras. O modelo de trapeamento baseado em saltos de soleiras de diabásio foi testado com sucesso por algumas companhias de petróleo e está consolidado na Bacia do Parnaíba. Além disto, corpos magmáticos intrusivos também fornecem o calor necessário para a geração de gás e na instauração de rotas efetivas de migração.
Referências
ABLAY, G. J.; CLEMENS, J. D.; PETFORD, N. Large-scale mechanics of fracture-mediated felsic magma intrusion driven by hydraulic inflation and buoyancy pumping. In: THOMSON, K.; PETFORD, N. (Ed.). Structure and emplacement of high-level magmatic system. London: The Geological Society, 2008. p. 3-29. (Special Publication, 302).
ANDERSON, E. M. The dynamics of faulting and dyke formation with applications to Britain. 2nd. ed. Edinburgh: Oliver & Boyd, 1951. 206 p.
AWDANKIEWICZ, M.; BREITKREUZ, C.; EHLING, B. C. Emplacement textures in Late Palaeozoic andesite sills of the Flechtingen-Roblau Block, north of Magdeburg, Germany. In: BREITKREUZ, C.; PETFORD, N.(Ed.). Physical geology of high-level magmatic systems. London: The Geological Society, 2004. p. 51-66. (Special Publication, 234).
BELL, B.; BUTCHER, H. On the emplacement of sill complexes: evidence from the Faroe-Shetland Basin. In: JOLLEY, D. W.; BELL, B. R. (Ed.). The North Atlantic Igneous Province: stratigraphy, tecto-nic, volcanic and magmatic processes. London: The Geological Society, 2002. p. 307-329. (Special Publication, 197).
BRADLEY, J. Intrusion of major dolerite sills. Transactions of the Royal Society of New Zealand, Wellington, v. 3, n. 4, p. 27-55, 1965.
BULHÕES, E. M. Técnica “volume de amplitudes” para mapeamento de feições estruturais. In: IN-TERNATIONAL CONGRESS OF THE BRAZILIAN GEOPHYSICAL SOCIETY, 6., 1999, Rio de Janeiro. Proceedings... Rio de Janeiro: Sociedade Brasileira de Geofísica, 1999.
BULHÕES, E. M.; AMORIM, W. N. Princípio da sismocamada elementar e sua aplicação à técnica de volume de amplitudes (tecVA). In: INTERNATIO-NAL CONGRESS OF THE BRAZILIAN GEOPHYSICAL SOCIETY, 9., 2005, Salvador. Expanded abstract. Rio de Janeiro: Sociedade Brasileira de Geofísica, 2005. p. 1382-1387.
BUNGER, A. P.; JEFFREY, R. G.; DETOURNAY, E. Evolution and morphology of saucer-shaped sills in analogue experiments. In: THOMSON, K.; PETFORD, N. (Ed.). Structure and emplacement of high-level magmatics. London: The Geological Society, 2008. p. 109-120. (Special Publication, 302).
BURCHARDT, S. New insights into the mechanics of sill emplacement provided by field observations of the Njardvik Sill, Northeast Iceland. Journal of Volcanology and Geothermal Research, Amsterdam, v. 173, n. 3-4, p. 280-288, June 2008.
BURCHARDT, S. Mechanisms of magma empla-cement in the upper crust. 2009. 124 f. Thesis (Doktorgrades der Mathematisch) - Naturwissen-chaftlichen Fakultäten der Georg-August, Universität zu Göttingen, Göttingen, 2009.
CARTWRIGHT, J.; HANSEN, D. M. Magma transport through the crust via interconnected sill complexes. Geology, v. 34, n. 11, p. 929-932, Oct. 2006.
CASTRO, D. L.; FUCK, R. A.; PHILLIPS, J. D.; VI-DOTTI, R. M.; BEZERRA, F. H. R.; DANTAS, E. L. Crustal structure beneath the Paleozoic Parnaíba Basin revealed by airborne gravity and magnetic data, Brazil. Tectonophysics, Amsterdam, v. 614, n. 18, p. 128-145, Feb. 2014.
CHEVALLIER, L.; WOODFORD, A. Morph-tectonics and mechanism of emplacement of the dolerite rings and sills of the western Karoo, South Africa. South African Journal of Geology, Petroria, v. 102, n. 1, p. 43-54, Mar. 1999.
CONCEIÇÃO, J. C. J.; ZALÁN, P. V.; DAYAN, H. Deformações em rochas sedimentares induzidas por intrusões magmáticas: classificação e mecanismos de intrusão. Boletim de Geociências da Petrobras, Rio de Janeiro, v. 7 n. 1-4, p. 57-91, jan./dez. 1993.
CORAZZATO, C.; GROPPELLI, G. Depth, geometry and emplacement of sills to laccoliths and their host-rock relationships: montecampione group, Southern Alps, Italy. In: BREITKREUZ, C.; PETFORD, N. (Ed.). Physical geology of high-level magmatic systems. London: The Geological Society, 2004. p. 175-194. (Special Publication, 234).
CUNHA, P. R. C.; BIANCHINI, A. R.; CALDEIRA, J. L.; MARTINS, C. C. Parnaíba Basin, the awakening of a giant. In: SIMPOSIO BOLIVARIANO EXPLORACIÓN PETROLERA EM LAS CUENCAS SUBANDINAS, 11., 2012, Cartagena de Indias. Expanded Abstracts... Bogotá: Asociación Colombiana de Geólogos y Geofísicos del Petróleo, 2012.
DALY, M. C.; ANDRADE, V.; BAROUSSE, C. A.; COSTA, R.; MCDOWELL, K.; PIGGOTT, N. ; POOLE, A. J. Brasiliano crustal structure and the tectonic setting of the Parnaíba basin of NE Brazil: results of a deep seismic reflection profile. Tectonics, Washington, v. 33, n. 11, p. 2102-2120, Nov. 2014.
DELPINO, D. H.; BERMÚDEZ, A. M. Petroleum system including unconventional reservoirs in intrusive igneous rocks (sills and laccoliths). The Leading Edge, Tulsa, v. 28, n. 7, p. 804-811, July 2009.
FRANCIS, E. H. Magma and sediment-I emplacement mechanism of late Carboniferous tholeiite sills in northern Britain. Journal of the Geological Society, London, v. 139, n. 1, p. 1-20, Feb. 1982.
GALERNE, C. Y.; NEUMANN, E.-R.; PLANKE, S. Emplacement mechanisms of sill complexes: information from the geochemical architecture of the Golden Valley Sill Complex, South Africa. Journal of Volcanology and Geothermal Research, Amsterdam, v. 177, n. 2, p. 425-440, Oct. 2008.
GALERNE, C. Y.; NEUMANN, E.-R.; PLANKE, S. Magmatic differentiation processes in saucer-shaped sills: evidence from the Golden Valley Sill in the Karoo Basin, South Africa. Geosphere, v. 6, n. 3, p. 163-188, Jun. 2010.
GRESSIER, J. B.; MOURGUES, R.; BODET, L.; MAT-THIEU, J. Y.; GALLAND, O.; COBBOLD, P. Control of pore fluid pressure on depth of emplacement of magmatic sills: an experimental approach. Tectonophysics, Amsterdam, v. 489, n. 1-4, p. 1-13, June 2010.
GRETENER, P. E. On the mechanics of the intrusion of sills. Canadian Journal of Earth Science, Ottawa, v. 6, n. 6, p. 1415-1419, Dec. 1969.
GUDMUNDSSON, A.; LØTVEIT, I. F. Sills as fractured hydrocarbon reservoirs: examples and models. In: SPENCE, G. H.; REDFERN, J.; AGUILERA, R.; BEVAN, T. G.; COSGROVE, J. W.; COUPLES, G. D.; DANIEL, J.-M (Ed.). Advances in the study of fractured reservoirs. London: The Geological Society, 2014. p. 251-271. (Special Publications, 374).
HAMES, W.; MCHONE, J. G.; RENNE, P.; RUPPEL, C. The Central Atlantic Magmatic Province: insights from fragments of Pangea. Washington,D.C.: American Geophysical Union, 2003. 267p.
HANSEN, D. M.; CARTWRIGHT, J. A.; THOMAS, D. 3D seismic analysis of the geometry of igneous sills and sill junction relationships. In: DAVIES, R. J.; CARTWRIGHT, J. A.; STEWART, S. A.; LAPPIN, M.; UNDERHILL, J. R. (Ed.). 3D seismic technology: application to the exploration of sedimentary basins. London: The Geological Society, 2004. p. 199-208. (Memoirs, 29).
HUTTON, D. H. W. Insights into magmatism in volcanic margins: bridge structures and a new mechanism of basic sill emplacement - Theron Mountains, Antarctica. Petroleum Geoscience, Bath, v. 15, n. 3, p. 269-278, Aug. 2009.
JOHNSON, A. M.; POLLARD, D. D. Mechanics of growth of some laccolithic intrusions in the Henry Mountains, Utah, I: field observations, Gilbert’s model, physical properties and flow of the Magma. Tectonophysics, Amsterdam, v. 18, n. 3-4, p. 261-309, July 1973.
JONES, S. F.; WIELENS, H.; WILLIAMSON, M. C.; ZENTILLI, M. Impact of magmatism on petroleum systems in the Sverdrup Basin, Canadian Artic Islands, Nunavut: a numerical modelling study. Journal of Petroleum Geology, Beaconsfield, v. 30, n. 3, p. 237-256, July 2007.
KAVANAGH, J. L.; MENAND, T.; SPARKS, R. S. J. An experimental investigation of sill formation and propagation in layered elastic media. Earth and Planetary Science Letters, Amsterdam, v. 245, n. 3-4, p. 799-813, May 2006.
LEAMAN, D. E. Form, mechanisms and control of a dolerite intrusion near Hobart, Tasmania. Journal of Geological Society of Australia, Sydney, v. 22, n. 2, p. 175-186, 1975.
LEAMAN, D. E. Mechanics of sill emplacement: comments based on the Tasmanian dolerites. Aus-tralian Journal of Earth Sciences, Victoria, v. 42, n. 2, p.151-155, 1995.
LINSSER, H. F. H. Um discurso sobre intrusões de diabásio ilustrado por um modelo simplificado. Boletim Técnico da Petrobras, Rio de Janeiro, v. 16, n. 4, p. 201-219, 1973.
LISS, D. Emplacement processes and magma flow geometries of the Whin Sill complex. 2003. 240 f. Thesis (PhD) – The University of Bir-mingham, Birmingham, 2003.
LISS, D.; OWENS, H.; HUTTON, D. H. W. New palae-omagnetic results from Whin Sill complex: evidence for a multiple intrusion event and revised virtual geomagnetic poles for the late Carboniferous for the British Isles. Journal of the Geological Society, London, v. 161, p. 927-938, Dec. 2004.
MALTHE-SØRENSSEN, A.; PLANKE, S.; SVENSEN, H.; JAMTVEIT, B. Formation of saucer-shaped sills. In: BREITKREUZ, C.; PETFORD, N. (Ed.). Physical geology of high-level magmatic systems. London: The Geological Society, 2004. p. 215-227. (Special Publications, 234).
MATHIEU, L.; VAN WYK DE VRIES, B.; HOLOHAN, E. P.; TROLL, V. R. Dykes, cups, saucers and sills: analogue experiments on magma intrusion into brittle rocks. Earth and Planetary Science Letters, Amsterdam, v. 271, n. 1-4, p. 1-13, July 2008.
MERLE, R.; MARZOLI, A.; BERTRAND, H.; REISBERG, L.; VERATI, C.; ZIMMERMANN, C.; CHIARADIA, M.; BELLIENI, G.; ERNESTO, M. 40Ar/39Ar ages and Sr-Nd-Pb-Os geochemistry of CAMP tholeiites from Western Maranhão basin (NE Brazil). Lithos, Amsterdam, v. 122, n. 3-4, p. 137-151, Mar. 2011.
MONREAL, F. R.; VILLAR, H. J.; BAUDINO, R.; DELPINO, D.; ZENCICH, S. Modeling an atypical petroleum system: a case study of hydrocarbon generation, migration and accumulation related to igneous intrusions in the Neuquen Basin, Argenti-na. Marine and Petroleum Geology, Guildford, v. 26, n. 4, p. 590-605, Apr. 2009.
MORAIS NETO, J. M.; TROSDTORF JUNIOR, I.; SAN-TOS, S. F.; VASCONCELOS, C. S.; MENEZES, J. R. C.; RIBAS, M. P.; IWATA, S. A. Expressão sísmica das reativações tectônicas do lineamento transbrasilia-no na Bacia do Parnaíba. In: SIMPÓSIO NACIONAL DE ESTUDOS TECTÔNICOS, 14., 2013, Chapada dos Guimarães. Anais... Rio de Janeiro: Sociedade Brasileira de Geologia, 2013.
MUDGE, M. R. Depth control of some concordant intrusions. Geological Society of America Bulletin, New York, v. 79, n. 3, p. 315-322, Mar. 1968.
NEUMANN, E.-R.; PLANKE, S; MALTHE-SØRENSSEN, A. Emplacement mechanisms and magma flows in sheet intrusions in sedimentary basins. Oslo: University of Oslo, 2003. p. 1-10. VBPR Report.
NEUMANN, E.-R.; SVENSEN, H.; GALERNE, C. Y.; PLANKE, S. Multistage evolution of dolerites in the Karoo Large Igneous Province, Central South Africa. Journal of Petrology, Oxford, v. 52, n. 5, p. 959-984, Apr. 2011.
OLIVEIRA, D. C.; MOHRIAK, W. A. Jaibaras trough: an important element in the early tectonic evolution of the Parnaíba interior sag basin, Northern Brazil. Marine and Petroleum Geology, Guildford, v. 20, n. 3-4, p. 351-383, Mar./Apr. 2003.
PARRY, M.; ŠTÍSPKÁ, P.; SCHULMANN, K.; HROU-DA, F.; JEŽEK, J.; KRÖNER, A. Tonalite sill emplacement at an oblique plate boundary: northeastern margin of the Bohemian Massif. Tectonophysics, Amsterdam, v. 280, n. 1-2, p. 61-81, Oct. 1997.
PEDROSA JUNIOR, N. C.; VIDOTTI, R. M.; FUCK, R. A.; OLIVEIRA, K. M. L.; CASTELO BRANCO, R. M. G. Structural framework of the Jaibaras Rift, Brazil, based on geophysical data. Journal of South American Earth Sciences, Oxford, v. 58, p. 318-334, Mar. 2015.
PLANKE, S.; RASMUSSEN, T.; REY, S. S.; MYKLE-BUST, R. Seismic characteristic and distribution of volcanic intrusions and hydrothermal vent complexes in the Vøring and Møre basins. In: PETROLEUM GEOLOGY CONFERENCE, 6., 2003, London. Proce-edings… London: The Geological Society, 2005. p. 833-844.
POLLARD, D. D. Derivation and evaluation of a mechanical model for sheet intrusions. Tectonophysics, Amsterdam, v. 19, n. 3, p. 233-269, Oct. 1973.
POLLARD, D. D.; JOHNSON, A. Mechanics of growth of some laccolithic intrusions in the Henry Mountains, Utah, II: bending and failure of over-burden layers and sill formation. Tectonophysics, Amsterdam, v. 18, n. 3-4, p. 311-354, July 1973.
PORRAS, J.; AGÜERA, M.; PÉREZ, A. M.; PAGÁN, F.; BELOTTI, H. Caracterización geológica y pontencial petrolífero de los cuerpos ígneos intrusivos de la Cuenca Austral, Argentina. In: CONGRESO DE EX-PLORACIÓN Y DESAROLLO DE HIDROCARBUROS, 8., 2011, Mar del Plata. Trabajos tecnicos… Buenos Aires: Instituto Argentino del Petróleo y Gas, 2011. p. 519-548.
PORTO, A. L. Mapeamento sísmico de intrusões ígneas na porção Sudeste da Bacia do Parnaíba e suas implicações para um modelo de sistema petrolífero não convencional. 2013. 89 f. Trabalho de Conclusão de Curso (Bacharel em Geologia)- Faculdade de Geologia, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, 2013.
RATEAU, R.; SCHOFIELD, N.; SMITH, M. The potential role of igneous intrusions on hydrocarbon migration, West of Shetland. Petroleum Geoscience, Bath, v. 19, p. 259-272, July 2013.
RUBIN, A. M. Propagation of magma-filled cracks. Annual Review of Earth and Planetary Science, Palo Alto, v. 23, p. 287-336, 1995.
SCHOFIELD, N. J.; BROWN, D. J.; MAGEE, C.; STE-VENSON, C. T. Sill morphology and comparison of brittle and non-brittle emplacement mechanisms. Journal of the Geological Society, London, v. 169, n. 2, p. 127-141, 2012.
SKOGSEID, J.; PEDERSEN, T.; ELDHOLM, O.; LAR-SEN, B. T. Tectonism and magmatism during NE Atlantic continental break-up: the VØring margin. In: STOREY, B.C.; ALABASTER, T.; PANKHURST, R.J. (Ed.). Magmatism and the causes of continental break-up. London: The Geological Society, 1992. p. 305-320. (Special Publications, 68).
SVENSEN, H.; CORFU, F.; POLTEAU, S.; HAMMER, Ø.; PLANKE, S. Rapid magma emplacement in the Karoo Large Igneous Province. Earth and Plane-tary Science Letters, Amsterdam, v. 325-326, p. 1-9, Apr. 2012.
SMALLWOOD, J. R. Back-stripped 3D seismic data: a new tool applied to testing sill emplacement models. Petroleum Geoscience, Bath, v. 15, p. 259-268, Aug. 2009.
SMALLWOOD, J. R.; MARESH, J. The properties, morphology and distribution of igneous sills: modelling, borehole data and 3D seismic from the Faroe-Shetland area. In: JOLLEY, D. W.; BELL, B. R. (Ed.). The north Atlantic Igneous Province: stratigraphy, tectonic, volcanic and magmatic processes. London: The Geological Society, 2002. p. 271-306. (Special Publications, v. 197).
THOMAZ FILHO, A.; MIZUSAKI, A. M. P.; ANTO-NIOLI, L. Magmatism and petroleum exploration in the Brazilian Paleozoic basins. Marine and Petroleum Geology, Guildford, v. 25, n. 2, p. 143-151, Feb. 2008.
THOMSON, K.; HUTTON, D. Geometry and growth of sill complexes: insights using 3D seismic from the north rockall trough. Bulletin of Volcanology, Berlin, v. 66, n. 4, p. 364-375, May 2004.
THOMSON, K.; SCHOFIELD, N. Lithological and structural controls on the emplacement and morphology of sills in sedimentary basins. In: THOMSON, K.; PETFORD, N. (Ed.). Structure and emplacement of high-level magmatic systems. London: The Geological Society, 2008. p. 31-44. (Special Publications, 302).
TRENDALL, A. F. Discussion and reply the Tennant Creek porphyry revisited: a synsedimentary sill with peperite margins, Early Proterozoic, northern territory. Australian Journal of Earth Sciences, Victoria, v. 41, n. 4, p. 391-392, 1994.
WANDERLEY FILHO, J. Q.; TRAVASSOS, W. A. S.; ALVES, D. B. O diabásio nas bacias paleozoicas amazônicas: herói ou vilão? Boletim de Geociências da Petrobras, Rio de Janeiro, v. 14, n. 1, p. 177-184, nov. 2005/maio 2006.
ZALÁN, P. V.; CONCEIÇÃO, J. C. J.; WOLF, S.; AS-TOLFI, M. A. M.; APPI, V. T.; WOLFF, S.; VIEIRA, I. S.; MARQUES, A. Estilos estruturais relacionados a intrusões magmáticas básicas em rochas sedimentares. Boletim Técnico da Petrobras, Rio de Janeiro, v. 28, n. 4, p. 221-230, dez. 1985.
Downloads
Publicado
Edição
Seção
Licença
Esta licença permite que os reutilizadores distribuam, remixem, adaptem e criem obras derivadas do material em qualquer meio ou formato, desde que seja dada a devida atribuição ao criador. A licença permite o uso comercial.